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The present paper deals with an intrinsic investigation of the notion of a parallel π-
vector field on the pullback bundle of a Finsler manifold (M, L). The effect of the
existence of a parallel π-vector field on some important special Finsler spaces is stud-
ied. An intrinsic investigation of a particular β-change, namely the energy β-change
(eL2(x, y) = L2(x, y) + B2(x, y) with B := g(ξ(x), η); ξ(x) being a parallel π-vector
field), is established. The relation between the two Barthel connections Γ and eΓ, corre-
sponding to this change, is found. This relation, together with the fact that the Cartan
and the Barthel connections have the same horizontal and vertical projectors, enable
us to study the energy β-change of the fundamental linear connection in Finsler geom-
etry: The Cartan connection, the Berwald connection, the Chern connection and the
Hashiguchi connection. Moreover, the change of their curvature tensors is concluded.

It should be pointed out that the present work is formulated in a prospective modern
coordinate-free form.
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0. Introduction

Studying Finsler geometry, however, one encounters substantial difficulties trying
to seek analogues of classical global, or sometimes even local, results of Riemannian
geometry. These difficulties arise mainly from the fact that in Finsler geometry all
geometric objects depend not only on positional coordinates, as in Riemannian
geometry, but also on directional arguments.

In Riemannian geometry, there is a canonical linear connection on the manifold
M , whereas in Finsler geometry there is a corresponding canonical linear connection
due to Cartan. However, this is not a connection on M but is a connection on
T (TM), the tangent bundle of TM , or on π−1(TM ), the pullback of the tangent
bundle TM by π : TM → M .
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The concept of a parallel vector field in Riemannian geometry had been studied
by many authors. On the other hand, the notion of a parallel vector field in Finsler
geometry had been studied locally by Kitayama [7] and others.

In this paper, we study intrinsically the notion of a parallel π-vector field on the
pullback bundle π−1(TM ) of a Finsler manifold (M, L). Some properties of parallel
π-vector fields are discussed. These properties, in turn, play a key role in obtaining
other interesting results. The effect of the existence of a parallel π-vector field on
some important special Finsler spaces is investigated.

The infinitesimal transformations (changes) in Finsler geometry are important,
not only in differential geometry, but also in application to other branches of science,
especially in the process of geometrization of physical theories [9, 10].a For this
reason and as application of a parallel π-vector field, we investigate intrinsically a
particular β-change, which will be referred to as an energy β-changeb:

L̃2(x, y) = L2(x, y) + B2(x, y),

where (M, L) is a Finsler manifold admitting a parallel π-vector field ξ(x) and
B := g(ξ(x), η); η being the fundamental π-vector field. Moreover, the relation
between the two Barthel connections Γ and Γ̃, corresponding to this change, is
obtained. This relation, together with the fact that the Cartan and the Barthel
connections have the same horizontal and vertical projectors, enable us to study
the energy β-change of the fundamental linear connections on the pullback bundle
of a Finsler manifold, namely, the Cartan connection, the Berwald connection, the
Chern connection and the Hashiguchi connection. Moreover, the change of their
curvature tensors is concluded.

Finally, it should be pointed out that the present work is formulated in a prospec-
tive modern coordinate-free form.

1. Notation and Preliminaries

In this section, we give a brief account of the basic concepts of the pullback approach
to intrinsic Finsler geometry necessary for this work. For more details, we refer to
[1, 3] and [11]. We assume, unless otherwise stated, that all geometric objects treated
are of class C∞. The following notation will be used throughout this paper:

M : A real paracompact differentiable manifold of finite
dimension n and of class C∞,

F(M) : The R-algebra of differentiable functions on M ,

aIn 1941, Randers published his paper “On an asymmetrical metric in the four-space of general
relativity”. In this paper, Randers considered the simplest possible asymmetrical generalization
of a Riemannian metric. Adding a one-form to the existing Riemannian structure, he was the
first to introduce a special Finsler space. This space — which became known in the literature as
a Randers space — proved to be mathematically and physically very important. It was one of
the first attempts to study a physical theory in the wider context of Finsler geometry, although
Randers was not aware that the geometry he used was a special type of Finsler geometry.
bEnergy β-change by using a concurrent π-vector field is studied in [15].
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X(M) : The F(M)-module of vector fields on M ,
πM : TM → M : The tangent bundle of M ,

π∗
M : T ∗M → M : The cotangent bundle of M ,

π : TM → M : The sub-bundle of nonzero vectors tangent to M ,
V (TM ) : The vertical sub-bundle of the bundle TTM ,

P : π−1(TM ) → TM : The pullback of the tangent bundle TM by π,
P ∗ : π−1(T ∗M) → TM : The pullback of the cotangent bundle T ∗M by π,

X(π(M)) : The F(TM)-module of differentiable
sections of π−1(TM ),

X∗(π(M)) : The F(TM)-module of differentiable
sections of π−1(T ∗M),

iX : The interior product with respect to X ∈ X(M),
df : The exterior derivative of f ∈ F(M),
dL : = [iL, d], iL being the interior derivative with

respect to a vector form L.

Elements of X(π(M)) will be called π-vector fields and will be denoted by barred
letters X . Tensor fields on π−1(TM ) will be called π-tensor fields. The fundamental
π-vector field is the π-vector field η defined by η(u) = (u, u) for all u ∈ TM .

We have the following short exact sequence of vector bundles, relating the tan-
gent bundle T (TM) and the pullback bundle π−1(TM ):

0 → π−1(TM )
γ→ T (TM)

ρ→ π−1(TM ) → 0,

where the bundle morphisms ρ and γ are defined respectively by ρ := (πTM , dπ)
and γ(u, v) := ju(v), where ju is the natural isomorphism ju : TπM (v)M →
Tu(TπM (v)M). The vector one-form J on TM defined by J := γ ◦ ρ is called the
natural almost tangent structure of TM . The vertical vector field C on TM defined
by C := γ ◦ η is called the fundamental or the canonical (Liouville) vector field.

Let D be a linear connection (or simply a connection) on the pullback bundle
π−1(TM ). The map

K : TTM → π−1(TM ) : X �→ DXη

is called the connection map or the deflection map associated with D. A tangent
vector X ∈ Tu(TM) is said to be horizontal if K(X) = 0. The vector space Hu(TM)
of the horizontal vectors at u ∈ TM is called the horizontal space of M at u. The
connection D is said to be regular if

Tu(TM) = Vu(TM) ⊕ Hu(TM) ∀u ∈ TM. (1.1)

If M is endowed with a regular connection D, then the maps

γ : π−1(TM ) → V (TM),

ρ|H(TM) : H(TM) → π−1(TM ),

K|V (TM) : V (TM) → π−1(TM )
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are vector bundle isomorphisms. Let β := (ρ|H(TM))−1, called the horizontal map
associated with D, then

ρ ◦ β = idπ−1(TM ), β ◦ ρ =

{
idH(TM) on H(TM)

0 on V (TM).
(1.2)

For a regular connection D, the horizontal and vertical covariant derivatives
1

D

and
2

D are defined, for a vector (1)π-form A, for example, by

(
1

DA)(X, Y ) := (DβXA)(Y ), (
2

DA)(X, Y ) := (DγXA)(Y ).

The (classical) torsion tensor T of the connection D is given by

T(X, Y ) = DXρY − DY ρX − ρ[X, Y ] ∀X, Y ∈ X(TM),

from which the horizontal or (h)h-torsion tensor Q and the mixed or (h)hv-torsion
tensor T are defined respectively by

Q(X, Y ) = T(βXβY ), T (X, Y ) = T(γX, βY ) ∀X, Y ∈ X(π(M)).

The (classical) curvature tensor K of the connection D is given by

K(X, Y )ρZ = −DXDY ρZ + DY DXρZ + D[X,Y ]ρZ ∀X, Y, Z ∈ X(TM),

from which the horizontal (h-), mixed (hv-) and vertical (v-) curvature tensors,
denoted by R, P and S respectively, are defined by

R(X, Y )Z = K(βXβY )Z, P (X, Y )Z = K(βX, γY )Z,

S(X, Y )Z = K(γX, γY )Z.

The contracted curvature tensors R̂, P̂ and Ŝ, also known as the (v)h-, (v)hv- and
(v)v-torsion tensors, are defined by

R̂(X, Y ) = R(X, Y )η, P̂ (X, Y ) = P (X, Y )η, Ŝ(X, Y ) = S(X, Y )η.

If M is endowed with a metric g on π−1(TM ), we write

R(X, Y , Z, W ) := g(R(X, Y )Z, W ), . . . , S(X, Y , Z, W ) := g(S(X, Y )Z, W ).

(1.3)

On a Finsler manifold (M, L), there are canonically associated four linear con-
nections on π−1(TM ) [16]: The Cartan connection ∇, the Chern (Rund) connection
Dc, the Hashiguchi connection D∗ and the Berwald connection D◦. Each of these
connections is regular with (h)hv-torsion T satisfying T (X, η) = 0. The following
theorem guarantees the existence and uniqueness of the Cartan connection on the
pullback bundle.

Theorem 1.1 ([13]). Let (M, L) be a Finsler manifold and g the Finsler met-
ric defined by L. There exists a unique regular connection ∇ on π−1(TM )
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such that

(i) ∇ is metric : ∇g = 0.
(ii) The (h)h-torsion of ∇ vanishes : Q = 0.
(iii) The (h)hv-torsion T of ∇ satisfies : g(T (X, Y ), Z) = g(T (X, Z), Y ).

Definition 1.2. Let (M, L) be a Finsler manifold and g the Finsler metric defined
by L. We define :

�(X) := L−1g(X, η).

� := g − � ⊗ � : The angular metric tensor.

T (X, Y , Z) := g(T (X, Y ), Z) : The Cartan tensor.

C(X) := Tr{Y �→ T (X, Y )} : The contracted torsion.

g(C, X) := C(X) : C is the π-vector field associated with the π-form C.

Ricv(X, Y ) := Tr{Z �→ S(X, Z)Y } : The vertical Ricci tensor.

g(Ricv
0(X), Y ) := Ricv(X, Y ) : The vertical Ricci map Ricv

0 .

Scv := Tr{X �→ Ricv
0(X)} : The vertical scalar curvature.

Deicke theorem [2] can be formulated globally as follows:

Lemma 1.3. Let (M, L) be a Finsler manifold. The following assertions are
equivalent :

(i) (M, L) is Riemannian.
(ii) The (h)hv-torsion tensor T vanishes.
(iii) The π-form C vanishes.

The following two results [16] give an explicit expression for each of the Berwald,
Chern and Hashiguchi connections in terms of the Cartan connection ∇.

Theorem 1.4. The Chern connection Dc is given, in terms of Cartan connec-
tion, by

Dc
XY = ∇XY − T (KX, Y ) = D◦

XY − P̂ (ρX, Y ).

In particular, we have

(i) Dc
γX

Y = ∇γXY − T (X, Y ) = D◦
γX

Y .

(ii) Dc
βX

Y = ∇βXY = D◦
βX

Y − P̂ (X, Y ).

Theorem 1.5. The Hashiguchi connection D∗ is given, in terms of Cartan
connection, by

D∗
XY = ∇XY + P̂ (ρX, Y ) = D◦

XY + T (KX, Y ).

In particular, we have

(i) D∗
γX

Y = ∇γXY = D◦
γX

Y + T (X, Y ).

(ii) D∗
βX

Y = ∇βXY + P̂ (X, Y ) = D◦
βX

Y .
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We terminate this section by some concepts and results concerning the Klein–
Grifone approach to intrinsic Finsler geometry. For more details, we refer to [5, 6]
and [8].

A semispray is a vector field X on TM , C∞ on TM , C1 on TM , such that
ρ ◦ X = η. A semispray X which is homogeneous of degree two in the directional
argument ([C, X ] = X) is called a spray.

Proposition 1.6 ([8]). Let (M, L) be a Finsler manifold. The vector field G on
TM defined by iG Ω = −dE is a spray, where E := 1

2L2 is the energy function and
Ω := ddJE. Such a spray is called the canonical spray.

A nonlinear connection on M is a vector one-form Γ on TM , C∞ on TM , C0

on TM , such that

JΓ = J, ΓJ = −J.

The horizontal and vertical projectors hΓ and vΓ associated with Γ are defined
by hΓ := 1

2 (I + Γ) and vΓ := 1
2 (I − Γ). To each nonlinear connection Γ there is

associated a semispray S defined by S = hΓS′, where S′ is an arbitrary semispray.
A nonlinear connection Γ is homogeneous if [C, Γ] = 0. The torsion of a nonlinear
connection Γ is the vector two-forms t on TM defined by t := 1

2 [J, Γ]. The curvature
of Γ is the vector two-forms R on TM defined by R := − 1

2 [hΓ, hΓ]. A nonlinear
connection Γ is said to be conservative if dhΓE = 0.

Theorem 1.7 ([6]). On a Finsler manifold (M, L), there exists a unique conser-
vative homogeneous nonlinear connection with zero torsion. It is given by:

Γ = [J, G],

where G is the canonical spray.
Such a nonlinear connection is called the canonical connection, the Barthel con-

nection or the Cartan nonlinear connection associated with (M, L).

It should be noted that the semispray associated with the Barthel connection
is a spray, which is the canonical spray.

2. Finsler Spaces Admitting a Parallel π-Vector Field

In this section, we introduce and investigate intrinsically the notion of a parallel
π-vector field in Finsler geometry. The properties of parallel π-vector fields are
obtained.

In what follows ∇ will denote the Cartan connection associated with a Finsler
manifold (M, L) and S, P and R will denote the three curvature tensors of ∇.

Definition 2.1. Let (M, L) be a Finsler manifold. Let ∇ be the Cartan connection
in π−1(TM ). A π-tensor field ω is called

(i) ∇-horizontally parallel if
1

∇ω = 0,
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(ii) ∇-vertically parallel if
2

∇ω = 0,
(iii) ∇-parallel if both (i) and (ii) satisfy, i.e. ∇ω = 0.

Remark 2.2. The set of all ∇-parallel π-tensor fields of the same type form a
vector space over R.

Lemma 2.3. Let (M, L) be a Finsler manifold. If ξ(x, y) ∈ X(π(M)) is a π-vector
field and α ∈ X∗(π(M)) is the π-form associated with ξ under the duality defined by
the metric g : α = iξ g, then the π-form α is ∇-parallel, if and only if, ξ is ∇-parallel.

Proof. The proof follows from the expression of ∇α, taking into account the defi-
nition of α and the fact that ∇g = 0.

Now, we have the following

Proposition 2.4. Let ξ ∈ X(π(M)) be a ∇-parallel π-vector field on (M, L). For
the v-curvature tensor S, the following relations hold:

(i) S(X, Y ) ξ = 0, S(X, Y , Z, ξ) = 0.

(ii) (
1

∇S)(X, Y , Z, ξ) = 0.

(iii) (
2

∇S)(X, Y , Z, ξ) = 0.

For the hv-curvature tensor P, the following relations hold:

(iv) P (X, Y ) ξ = 0, P (X, Y , Z, ξ) = 0.

(v) (
1

∇S)(X, Y , Z, ξ) = 0.

(vi) (
2

∇S)(X, Y , Z, ξ) = 0.

For the h-curvature tensor R, the following relations hold:

(vii) R(X, Y ) ξ = 0, R(X, Y , Z, ξ) = 0.

(viii) (
1

∇R)(X, Y , Z, ξ) = 0.

(ix) (
2

∇R)(X, Y , Z, ξ) = 0.

Proof. The proof is clear and we omit it.

Lemma 2.5. Let (M, L) be a Finsler manifold and D◦ the Berwald connection on
π−1(TM ). Then, we have

(i) A π-vector field Y ∈ X(π(M)) is independent of the directional argument y, if
and only if, D◦

γX
Y = 0 for all X ∈ X(π(M)).

(ii) A scalar (vector) π-form ω is independent of the directional argument y, if and
only if, D◦

γX
ω = 0 for all X ∈ X(π(M)).
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Proposition 2.6. Let (M, L) be a Finsler manifold. Let ξ(x) ∈ X(π(M)) be a
∇-parallel π-vector field. For every X, Y ∈ X(π(M)), we have

(i) T (X, ξ) = T (ξ, X) = 0.
(ii) P̂ (ξ, X) = P̂ (X, ξ) = 0.
(iii) P (X, ξ)Y = P (ξ, X)Y = 0.

Proof. (i) The proof follows from the fact that ξ(x) ∈ X(π(M)) is a ∇-parallel
π-vector field, taking into account Theorem 1.4(i) and Lemma 2.5.

(ii) Follows from the identity P̂ (X, Y ) = (∇βηT )(X, Y ) [17], making use of (i) and
the fact that T (X, η) = 0.

(iii) We have [17]

P (X, Y , Z, W ) = g((∇βZT )(Y , X), W ) − g((∇βW T )(Y , X), Z)

−g(T (X, W ), P̂ (Z, Y )) + g(T (X, Z), P̂ (W, Y )). (2.1)

From which, by setting Y = ξ (resp. X = ξ) and using (i) and (ii) above, the
result follows.

In view of the above results together with Theorems 1.4 and 1.5, we have

Theorem 2.7. If ξ(x) ∈ X(π(M)) is a ∇-parallel π-vector field on (M, L). Then,

we have

(i) ξ is D◦-parallel.
(ii) ξ is Dc-parallel.
(iii) ξ is D∗-parallel.

Theorem 2.8. If ξ(x) ∈ X(π(M)) is a ∇-parallel π-vector field on (M, L). Then,

the curvature tensors associated with the Chern connection Dc, the Hashiguchi
connection D∗ and the Berwald connection D◦ have the same properties as
Proposition 2.4.

3. Special Finsler Spaces Admitting Parallel π-Vector Fields

In this section, we investigate the effect of the existence of a ∇-parallel (parallel)
π-vector field which is independent of y on some important special Finsler spaces.
The intrinsic definitions of the special Finsler spaces treated here are quoted from
[14]. In what follows we assume that ξ(x) 	= 0 is a parallel π-vector field independent
of y.

For later use, we need the following lemma.

Lemma 3.1. Let (M, L) be a Finsler manifold which admits a non-zero parallel
π-vector ξ(x). Then, we have:

(i) The scalar function B := g(ξ, η) is everywhere non-zero.
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(ii) The π-vector field m := ξ− B
L2 η is everywhere non-zero and is orthogonal to η.

(iii) The π-vector fields m and ξ satisfy g(m, ξ) = g(m, m) 	= 0.
(iv) The angular metric tensor � satisfies �(ξ, X) 	= 0 for all X 	= η.

Proof. (i) If B := g(ξ, η) = 0, then

0 = (∇γXg)(ξ, η) = ∇γXg(ξ, η) − g(ξ, X) = −g(ξ, X), ∀X ∈ X(π(M)),

which contradicts ξ(x) 	= 0.
(ii) If m = 0, then L2ξ − Bη = 0. Differentiating covariantly with respect to γX,

we get

2g(X, η)ξ − BX − g(X, ξ)η = 0. (3.1)

From which,

g(X, ξ) =
B

L2
g(X, η). (3.2)

By (3.1), using (3.2), we obtain

0 = 2g(X, η)g(Y , ξ) − Bg(X, Y ) − g(X, ξ)g(Y , η)

= 2
B

L2
g(Y , η)g(X, η) − Bg(X, Y ) − B

L2
g(X, η)g(Y , η)

= −B

{
g(X, Y ) − 1

L2
g(Y , η)g(X, η)

}
= −B�(X, Y ).

From which, since B 	= 0, we are led to a contradiction: � = 0.
On the other hand, the orthogonality of the two π-vector fields m and η

follows from the identities g(η, η) = L2 and g(η, ξ) = B.
(iii) Follows from (ii).
(iv) Suppose that �(X, ξ) = 0 for all X 	= η ∈ X(TM), then, we have

0 = �(X, ξ) = g(X, ξ) − 1
L2

g(ξ, η)g(X, η) = g(m, X),

which contradicts the fact that m 	= 0.

Definition 3.2. A Finsler manifold (M, L) is Riemannian if the metric tensor
g(x, y) is independent of y or, equivalently, if

T (X, Y ) = 0, for all X, Y ∈ X(π(M)).

Definition 3.3. A Finsler manifold (M, L) is a Landsberg manifold if P̂ (X, Y ) = 0,
or equivalently, if ∇βηT = 0.

Definition 3.4. A Finsler manifold (M, L) is said to be:

(i) Ch-recurrent if the (h)hv-torsion tensor T satisfies the condition ∇βX T =
λo(X)T, where λo is a π-form of order one.
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(ii) Cv-recurrent if the (h)hv-torsion tensor T satisfies the condition
(∇γXT )(Y , Z) = λo(X)T (Y , Z).

(iii) C0-recurrent if the (h)hv-torsion tensor T satisfies the condition
(D◦

γX
T )(Y , Z) = λo(X)T (Y , Z).

Theorem 3.5. Let (M, L) be a Finsler manifold which admits a parallel π-vector
field ξ(x) such that λo(ξ) 	= 0. Then, the following assertions are equivalent:

(i) (M, L) is a Ch-recurrent manifold.
(ii) (M, L) is a Cv-recurrent manifold.
(iii) (M, L) is a C0-recurrent manifold.
(iv) (M, L) is a Riemannian manifold.

Proof. It is to be noted that (i), (ii) and (iv) are equivalent despite of the existence
of a parallel π-vector field [14]. The implication (iv) ⇒ (i) is trivial. It remains to
prove that (i) ⇒ (iv). Setting W = ξ in (2.1), making use of P̂ (ξ, X) = 0 =
T (ξ, X) (Proposition 2.6), and g((∇βZT )(X, Y ), W ) = g((∇βZT )(X, W ), Y ) ([17,
Proposition 3.3]), we get

∇βξT = 0.

On the other hand, Definition 3.4(i) for X = ξ, yields

∇βξT = λo(ξ)T.

The above two equations imply that T = 0 and hence (M, L) is Riemannian.

Definition 3.6. A Finsler manifold (M, L) is said to be:

(i) Quasi-C-reducible if dim(M) ≥ 3 and the Cartan tensor T has the from

T (X, Y , Z) = A(X, Y )C(Z) + A(Y , Z)C(X) + A(Z, X)C(Y ),

where A is a symmetric π-tensor field satisfying A(X, η) = 0.
(ii) Semi-C-reducible if dimM ≥ 3 and the Cartan tensor T has the form

T (X, Y , Z) =
µ

n + 1
{�(X, Y )C(Z) + �(Y , Z)C(X) + �(Z, X)C(Y )}

+
τ

C2
C(X)C(Y )C(Z), (3.3)

where C2 := C(C) 	= 0, µ and τ are scalar functions satisfying µ + τ = 1.
(iii) C-reducible if dimM ≥ 3 and the Cartan tensor T has the form

T (X, Y , Z) =
1

n + 1
{�(X, Y )C(Z) + �(Y , Z)C(X) + �(Z, X)C(Y )}. (3.4)

(iv) C2-like if dimM ≥ 2 and the Cartan tensor T has the form

T (X, Y , Z) =
1

C2
C(X)C(Y )C(Z).
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Proposition 3.7. If a quasi-C-reducible Finsler manifold (M, L) (dimM ≥ 3)
admits a parallel π-vector field ξ(x), then (M, L) is Riemannian, provided that
A(ξ, ξ) 	= 0.

Proof. Follows from the defining property of quasi-C-reducibility by setting X =
Y = ξ and using the fact that C(ξ) = 0 and A(ξ, ξ) 	= 0.

Theorem 3.8. Let (M, L) be a Finsler manifold (dimM ≥ 3) which admits a
parallel π-vector field ξ(x), then, we have

(i) A C-reducible manifold (M, L) is a Riemannian manifold.
(ii) A semi-C-reducible manifold (M, L) is a C2-like manifold.

Proof. (i) Follows from the defining property of C-reducibility by setting X =
Y = ξ, taking into account Lemma 3.1(iv), Lemma 1.3 and C(ξ) = 0.

(ii) Let (M, L) be semi-C-reducible. Setting X = Y = ξ and Z = C in (3.3), taking
into account Proposition 2.6(i) and C(ξ) = 0, we get

µ�(ξ, ξ)C(C) = 0.

From which, since �(ξ, ξ) 	= 0 and C(C) 	= 0, it follows that µ = 0. Conse-
quently, (M, L) is C2-like.

Definition 3.9. The condition

T(X, Y , Z, W ) := L(∇γXT )(Y , Z, W ) + SX,Y ,Z,W �(X)T (Y , Z, W ) = 0, (3.5)

will be called the T-condition.
The more relaxed condition

To(X, Y ) := L(∇γXC)(Y ) + SX,Y �(X)C(Y ) = 0. (3.6)

will be called the To-condition.

Theorem 3.10. Let (M, L) be a Finsler manifold which admits a parallel π-vector
field ξ(x). Then, the following assertions are equivalent:

(i) (M, L) satisfies the T-condition.
(ii) (M, L) satisfies the To-condition.
(iii) (M, L) is Riemannian.

Proof. (i) ⇒ (iii): Follows from (3.5) by setting W = ξ, taking into account that
T (X, ξ) = T (ξ, X) = 0 and �(ξ) = B

L 	= 0.
(ii) ⇒ (iii): Follows from (3.6) by setting Y = ξ, taking into account the fact that

�(ξ) 	= 0.

The other implications are trivial.



July 7, 2011 8:44 WSPC/S0219-8878 IJGMMP-J043
S0219887811005373

764 A. Soleiman

Definition 3.11. A Finsler manifold (M, L) is said to be S3-like if dim(M) ≥ 4
and the v-curvature tensor S has the form:

S(X, Y , Z, W ) =
Scv

(n − 1)(n − 2)
{�(X, Z)�(Y , W ) − �(X, W )�(Y , Z)}. (3.7)

Theorem 3.12. If an S3-like manifold (M, L) (dimM ≥ 4) admits a parallel
π-vector field ξ(x), then, the v-curvature tensor S vanishes.

Proof. Setting Z = ξ in (3.7), taking Proposition 2.4 into account, we immediately
get

Scv

(n − 1)(n − 2)
{�(X, ξ)�(Y , W ) − �(X, W )�(Y , ξ)} = 0.

Taking the trace of the above equation, we have

Scv

(n − 1)(n − 2)
{(n − 1)�(X, ξ) − �(X, ξ)} =

Scv

(n − 1)
�(X, ξ) = 0.

From which, since �(X, ξ) 	= 0 (Lemma 3.1), the vertical scalar curvature Scv

vanishes. Now, again, from (3.7), the result follows.

Definition 3.13. A Finsler manifold (M, L), where dimM ≥ 3, is said to be:

(i) P2-like if the hv-curvature tensor P has the form:

P (X, Y , Z, W ) = ω(Z)T (X, Y , W ) − ω(W )T (X, Y , Z), (3.8)

where ω is a (1)π-form (positively homogeneous of degree 0).
(ii) P -reducible if the π-tensor field P̂ (X, Y , Z) := g(P̂ (X, Y ), Z) has the form

P̂ (X, Y , Z) = δ(X)�(Y , Z) + δ(Y )�(X, Z) + δ(Z)�(X, Y ), (3.9)

where δ is the π-form defined by δ(X) = 1
n+1 (∇βη C)(X).

Theorem 3.14. Let (M, L) be a Finsler manifold (dimM ≥ 3) which admits a
parallel π-vector field ξ(x), then, we have

(i) A P2-like manifold (M, L) is a Riemannian manifold, provided that ω(ξ) 	= −1.
(ii) A P -reducible manifold (M, L) is a Landsberg manifold.

Proof. (i) Setting Z = ξ in (3.8), taking into account Propositions 2.4 and 2.6, we
immediately get

(ω(ξ) + 1)T (X, Y ) = 0.

Hence, the result follows.
(ii) Setting X = Y = ξ in (3.9) and taking into account that (∇βηC)(ξ) = 0, we get

�(ξ, ξ)(∇βηC)(Z) = 0, with �(ξ, ξ) 	= 0 (Lemma 3.1). Consequently, ∇βηC = 0.
Hence, again, from Definition 3.13(b), the (v)hv-torsion tensor P̂ = 0.
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Definition 3.15. A Finsler manifold (M, L), where dimM ≥ 3, is said to be:

(i) h-isotropic if there exists a scalar ko such that the horizontal curvature tensor
R has the form

R(X, Y )Z = ko{g(X, Z)Y − g(Y , Z)X};

(ii) of scalar curvature if there exists a scalar function k : TM → R such that

R(η, X, η, Y ) = kL2
�(X, Y ),

where k is called the scalar curvature.

Theorem 3.16. Let (M, L), dimM ≥ 3, be an h-isotropic Finsler manifold admit-
ting a parallel π-vector field ξ(x), then the h-curvature tensor R of the Cartan
connection vanishes.

Proof. From Definition 3.15(i), we have

R(X, Y , Z, W ) = ko{g(X, Z)g(Y , W ) − g(Y , Z)g(X, W )}. (3.10)

Setting Z = ξ and X = m and noting that R(X, Y )ξ = 0 (Proposition 2.4), we
have

ko{g(m, ξ)g(Y , W ) − g(Y , ξ)g(m, W )} = 0.

Taking the trace of this equation, we get

ko(n − 1)g(m, ξ) = 0.

From which, since g(m, ξ) = g(m, m) 	= 0 (Lemma 3.1) and dimM ≥ 3, the scalar
ko vanishes. Now, again, from (3.10), the result follows.

Theorem 3.17. Let (M, L), dimM ≥ 3, be a Finsler manifold of scalar curvature
admitting a parallel π-vector field ξ(x). The following statements hold :

(i) The scaler curvature k vanishes.
(ii) The deviation tensor field H (H(X) := R̂(η, X)) vanishes.
(iii) The (v)h-torsion tensor R̂ of Cartan connection vanishes.
(iv) The h-curvature tensor R◦ of Berwald connection vanishes.
(v) The horizontal distribution is completely integrable.

Proof. (i) Follows from Definition 3.15(ii) by setting Y = ξ, taking into account
Proposition 2.4(vii) and Lemma 3.1(v).

(ii) Follows from (i) and Definition 3.15(ii).
(iii), (iv) and (v) Follow from [17, Theorem 4.7].
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4. Energy β-Change and a Parallel π-Vector Field

In the present and the next sections we consider a perturbation, by a parallel
π-vector field ξ(x), of the energy function E = 1

2L2 of a Finsler structure L.
Let (M, L) be a Finsler manifold. Consider the change

L̃2(x, y) = L2(x, y) + B2(x, y), with B := α(η) := g(η, ξ), (4.1)

L̃ defines a new Finsler structure on M . The Finsler structure L̃ is said to be
obtained from the Finsler structure L by the β-change (4.1). The β-change (4.1)
will be referred to as an energy β-change (as it can be written in the form
Ẽ = E + 1

2B2, where E and Ẽ are the energy functions corresponding to the
Lagrangians L and L̃ respectively).

The following two lemmas are useful for subsequent use.

Lemma 4.1. The function B(x, y) given by (4.1) has the properties

(i) B = dJE(βξ), dJB = α ◦ ρ, dhB = 0.
(ii) ddJB2(γX, βY ) = 2α(X)α(Y ), ddJB2(γX, γY ) = 0.
(iii) ddJB2(βX, βY ) = 0.

Proof. (i) From g(η, η) = 2E2 and ∇g = 0, one can show that

dJE(X) = g(ρX, η), ∀X ∈ X(TM).

Setting X = βξ, we obtain B = dJE(βξ).

On the other hand,

dJB(X) = JX · B = JX · g(ξ, η) = g(ξ,∇JXη) = g(ξ, ρX) = α(ρX).

Similarly,

dhB(X) = hX · B = hX · g(ξ, η) = g(∇hX ξ, η) + g(ξ,∇hX η) = 0.

(ii) Making use of (i), we have

ddJB2(γX, βY ) = γX · dJB2(βY ) − βY · dJB2(γX) − dJB2([γX, βY ])

= 2γX · (BγY · B) − 2βY · (BJγX · B) − 2BJ [γX, βY ] · B

= 2γX · (Bg(Y , ξ)) − 2Bg(ρ[γX, βY ], ξ)

= 2
{
g(X, ξ)g(Y , ξ) + BγX · g(Y , ξ)

}
− 2Bg(∇γXY − T (X, Y ), ξ)

= 2{g(X, ξ)g(Y , ξ) + Bg(∇γXY , ξ)} − 2Bg(∇γXY , ξ)

= 2α(X)α(Y ).

Similarly, ddJB2(γX, γY ) = 0.
(iii) The proof is analogous to that of (ii).
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The following lemma establishes some link between the pullback approach and
Klein–Grifone approach and useful for subsequent use.

Lemma 4.2. Let (M, L) be a Finsler manifold. Let g be the Finsler metric associ-
ated with L and ∇ the Cartan connection on π−1(TM ). Then, the following relation
holds

g(X, Y ) = Ω(γX, βY ) for all X, Y ∈ X(π(M)), (4.2)

where Ω := ddJE and β is the connection map associated with ∇.

The following result gives the relationship between g and g̃.

Proposition 4.3. Under the energy β-change (4.1), the Finsler metrics g and g̃

are related by

g̃(X, Y ) = g(X, Y ) + α(X)α(Y ), for all X, Y ∈ X(π(M)), (4.3)

α being the π-form associated with ξ under the duality defined by the metric g.

Proof. The proof follows by applying the operator 1
2ddJ on both sides of (4.1),

taking into account (4.2), Lemma 4.2 and Lemma 4.1.

Theorem 4.4. Let (M, L) and (M, L̃) be two Finsler manifolds related by 4.1. The
associated Barthel connections Γ̃ and Γ are related by

Γ̃ = Γ. (4.4)

Consequently, h̃ = h, ṽ = v, or equivalently, β̃ = β, K̃ = K.

Proof. Since L̃2(x, y) = L2(x, y) + B2(x, y), then, using the fact that E = 1
2L2,

we get

Ẽ = E +
1
2
B2.

From which and using that Ω := ddJE, we obtain

Ω̃ = Ω +
1
2
ddJB2.

As the difference between two sprays is a vertical vector field, assume that G̃ =
G + γµ, for some µ ∈ X(π(M)), then we have

−dẼ(X) = i eG Ω̃(X) = iG+γµ Ω̃(X)

= iGΩ(X) +
1
2
iG ddJB2(X) + iγµ Ω(X) +

1
2
iγµ ddJB2(X). (4.5)

Now, we compute the terms on the right-hand side (using Lemmas 4.1 and 4.2):

iG Ω(X) = −dE(X).

iγµ Ω(X) = Ω(γµ, X) = Ω(γµ, γKX + βρX) = Ω(γµ, βρX) = g(µ, ρX).
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1
2

iG ddJB2(X) =
1
2
{ddJB2(βη, βρX) − ddJB2(γKX , βη)}

= −g(KX, ξ)g(η, ξ) = −X · g(η, ξ)g(η, ξ)

= −BdB(X).

1
2

iγµ ddJB2(X) =
1
2

ddJB2(γµ, βρX + γKX)

=
1
2

ddJB2(γµ, βρX) = g(ξ, µ)g(ξ, ρX).

From these, together with dẼ(X) = dE(X) + BdB(X), Eq. (4.5) reduces to

g(µ, ρX) + g(ξ, µ)g(ξ, ρX) = 0, (4.6)

from which by setting X = βξ, we obtain

g(ξ, µ) = 0. (4.7)

From Eqs. (4.6) and (4.7), we have µ = 0, and consequently

G̃ = G. (4.8)

Now, by using Γ = [J, G], together with (4.8), the result follows.

We terminate this section by the following

Theorem 4.5. Under energy β-change (4.1), the following geometric object are
invariant:

(i) The canonical spray G.
(ii) The nonlinear connection Γ := [J, G].
(iii) The curvature � of the nonlinear connection Γ.

Proof. The proof is clear and we omit it.

5. Energy β-Change and Fundamental Linear Connections

In this section, we investigate the transformation of the fundamental linear con-
nections of Finsler geometry, as well as their curvature tensors, under the energy
β-change (4.1). We start our investigation with the Cartan connection.

The following two lemmas useful for subsequent use

Lemma 5.1 ([13]). Let (M, L) be a Finsler manifold. Let g be the Finsler metric
associated with L and let ∇ be the Cartan connection determined by the metric g.
Then, the following relations hold

(i) 2g(∇vXρY, ρZ) = vX · g(ρY, ρZ) + g(ρY, ρ[Z, vX ]) + g(ρZ, ρ[vX, Y ]).
(ii) 2g(∇hXρY, ρZ) = hX · g(ρY, ρZ) + hY · g(ρZ, ρX) − hZ · g(ρX, ρY )

−g(ρX, ρ[hY, hZ]) + g(ρY, ρ[hZ, hX ]) + g(ρZ, ρ[hX, hY ]).
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Since the Cartan connection ∇ and the Barthel connection Γ =: [J, G] have the
same horizontal and vertical projectors, then we have:

Lemma 5.2. Under β-change given by (4.1), the Cartan horizontal projectors
h and h̃ (resp. the Catan vertical projectors v and ṽ) are related by h̃ =
h, (resp. ṽ = v).

Theorem 5.3. Let (M, L) and (M, L̃) be two Finsler manifolds are related by (4.1).
Then the associated Cartan connections ∇ and ∇̃ are related by:

∇̃XρY = ∇XρY, for all X, Y ∈ X(TM). (5.1)

In particular,

(i) ∇̃γXY = ∇γXY ,

(ii) ∇̃βXY = ∇βXY .

Proof. Using Lemma 5.1(i) and Proposition 4.3, taking into account Lemma 5.2,
we have

2g̃(∇̃evXρY, ρZ) = ṽX · g̃(ρY, ρZ) + g̃(ρY, ρ[Z, ṽX ]) + g̃(ρZ, ρ[ṽX, Y ])

= vX · g̃(ρY, ρZ) + g̃(ρY, ρ[hZ, vX ]) + g̃(ρZ, ρ[vX, hY ])

= vX · {g(ρY, ρZ) + g(ρY, ξ)g(ρZ, ξ)}

+ g(ρY, ρ[hZ, vX ]) + g(ρY, ξ)g(ρ[hZ, vX ], ξ)

+ g(ρZ, ρ[vX, hY ]) + g(ρZ, ξ)g(ρ[vX, hY ], ξ)

= {vX · g(ρY, ρZ) + g(ρY, ρ[hZ, vX ]) + g(ρZ, ρ[vX, hY ])}

+ {g(∇vXρY, ξ)g(ρZ, ξ) + g(ρY, ξ)g
(
∇vXρZ, ξ

)
+ g(ρY, ξ)g(T(vX, hZ) −∇vXρZ, ξ)

+ g(ρZ, ξ)g
(
∇vXρY − T(vX, hY ), ξ

)
}.

Since g(T(vX, hY ), ξ) = −g(T (KX, ξ), ρY ) = 0, the above relation takes the form

2g̃(∇̃vXρY, ρZ) = 2g(∇vXρY, ρZ) + 2g(g(∇vXρY, ξ)ξ, ρZ).

Consequently,

g(∇̃evXρY, ρZ) + g(g(∇̃evXρY, ξ) ξ, ρZ) = g(∇vXρY, ρZ)

+ g(g(∇vXρY, ξ) ξ, ρZ). (5.2)

From which, by setting Z = βξ, we get

g(∇̃evXρY, ξ) − g(∇vXρY, ξ) = 0. (5.3)

Then, Eqs. (5.2) and (5.3) imply that

∇̃evXρY = ∇evXρY. (5.4)
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Similarly, by Lemma 2.3(ii) and Proposition 4.2, taking into account Lemma 5.2
and the fact that T (ξ, X) = 0 = T (X, ξ), we get after long but easy calculations

2g̃(∇̃ehXρY, ρZ) = h̃X · g̃(ρY, ρZ) + h̃Y · g̃(ρZ, ρX) − h̃Z · g(ρX, ρY )

− g̃(ρX, ρ[h̃Y, h̃Z]) + g̃(ρY, ρ[h̃Z, h̃X ]) + g̃(ρZ, ρ[h̃X, h̃Y ])

= hX · g̃(ρY, ρZ) + hY · g̃(ρZ, ρX) − hZ · g(ρX, ρY )

− g̃(ρX, ρ[hY, hZ]) + g̃(ρY, ρ[hZ, hX ]) + g̃(ρZ, ρ[hX, hY ])

= hX · {g(ρY, ρZ) + g(ρY, ξ)g(ρZ, ξ)}

+ hY · {g(ρZ, ρX) + g(ρZ, ξ)g(ρX, ξ)}

− hZ · {g(ρX, ρY ) + g(ρX, ξ)g(ρY, ξ)}

− {g(ρX, ρ[hY, hZ]) + g(ρX, ξ)g(ρ[hY, hZ], ξ)}

+ {g(ρY, ρ[hZ, hX ]) + g(ρY, ξ)g(ρ[hZ, hX ], ξ)}

+ {g(ρZ, ρ[hX, hY ]) + g(ρZ, ξ)g(ρ[hX, hY ], ξ)}.

Hence,

2g̃(∇̃ehXρY, ρZ) = {hX · g(ρY, ρZ) + hY · g(ρZ, ρX)− hZ · g(ρX, ρY )

− g(ρX, ρ[hY, hZ]) + g(ρY, ρ[hZ, hX ]) + g(ρZ, ρ[hX, hY ])}

+ {g(∇hXρY, ξ)g(ρZ, ξ) + g(∇hXρZ, ξ)g(ρY, ξ)}

+ {g(∇hY ρZ, ξ)g(ρX, ξ) + g(∇hY ρX, ξ)g(ρZ, ξ)}

− {g(∇hZρX, ξ)g(ρY, ξ) + g(∇hZρY, ξ)g(ρX, ξ)}

− {g(ρX, ξ)g(∇hY ρZ −∇hZρY, ξ)}

+ {g(ρY, ξ)g(∇hZρX −∇hXρZ, ξ)}

+ {g(ρZ, ξ)g(∇hXρY −∇hY ρX, ξ)}.

Consequently,

g(∇̃ehXρY, ρZ) + g(g(∇̃ehXρY, ξ) ξ, ρZ) = g(∇hXρY, ρZ)

+ g(g(∇hXρY, ξ) ξ, ρZ). (5.5)

From which, by setting Z = βξ and taking into account βoρ = idX(π(M)), we have

g̃(∇̃hXρY, ξ) − g(∇hXρY, ξ) = 0. (5.6)

Now, from Eqs. (5.5) and (5.6), taking into account the fact that the Finsler metric
tensor g is nondegenerate, we obtain

∇̃hXρY = ∇hXρY. (5.7)

Therefore, by (5.4) and (5.7), taking into account the fact that h + v = I, the
Eq. (5.1) follows.
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Finally, Part (a) and (b) follows from (5.1) by setting X = γX (resp. X = βX)
and Y = βY , noting that ρ o γ = 0.

As a consequence of Theorem 5.3 and Definition 2.1 yield

Proposition 5.4. If a Finsler manifold with fundamental function L admits a
parallel π-vector field ξ(x) with respect to ∇, then the vector field ξ is a parallel
π-vector field with respect to the modified metric (4.1).

In view of the above theorem and Lemma 5.2, we have

Corollary 5.5. Under energy β-change (4.1), the following geometric objects are
invariant

(i) The Cartan connection: ∇.
(ii) The torsion tensors of Cartan connection: T, P̂ and R̂.
(iii) The curvature tensors of Cartan connection: S, P and R.
(iv) The vertical and horizontal Ricci tensors of Cartan connection: Ricv and Rich.
(v) The vertical and horizontal scaler functions of Cartan connection: Scv and

Sch.

We terminate our study by the energy β-change of Berwald connection D◦,
Chern connection Dc and Hashiguchi connection D∗.

From Theorems 1.4, 1.5, 5.3 and Lemma 5.2, taking into account the fact that
the torsion tensors T and P̂ are invariant under the energy β-change (4.1) (Corol-
lary 5.5(ii)), we have

Theorem 5.6. Under energy β-change (4.1), the following geometric objects are
invariant

(i) The Berwald connection: D◦.
(ii) The torsion and curvature tensors of Berwald connection: R̂◦ and P ◦, R◦.
(iii) The Chern connection: Dc.
(iv) The torsion and curvature tensors of Chern connection: P̂ c, R̂c and P c, Rc.
(v) The Hashiguchi connection: D∗.
(vi) The torsion and curvature tensors of Hashiguchi connection: R̂∗ and

S∗, P ∗, R∗.

Acknowledgments

The author express his sincere thanks to referees and my Professor Nabil L. Youssef
for their valuable suggestions and comments.

References

[1] H. A. Zadeh, Initiation to Global Finsler Geometry (Elsevier, 2006).
[2] F. Brickell, A new proof of Deicke’s theorem on homogeneous functions, Proc. Amer.

Math. Soc. 16 (1965) 190–191.



July 7, 2011 8:44 WSPC/S0219-8878 IJGMMP-J043
S0219887811005373

772 A. Soleiman

[3] P. Dazord, Propriétés globales des géodésiques des espaces de Finsler, Thèse d’Etat
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